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Abstract— The current work is concerned with the normal impact of flat-nosed cylindrical projectiles
striking at a velocity in the vicinity of the ballistic limit on metallic targets. The ratio of target
thickness to striker diameter ranges from 1/4 to /2, The resulting penetration model extends existing
theories to include the extensive deformation of the target resulting from the bending effect. The
dynamic and static stress-strain relations of 2024-0 aluminum are obtained by means of the split-
Hopkinson bar technique and an Instron machine, respectively. A series of tests with 0.8 mm
diameter pre-drilled holes in cach target is conducted to assess the relative effects of bending and
shear on the plate deformation. A total of 20 shots are executed to examine the phenomenon of the
plate response under impact loading. The 12.7 mm diameter hard-steel projectiles are fired with a
preumatic gun against 3.18, 4.76, and 6.35 mm aluminum targets at a velocity of up to 182 ms "
A dynamic plastic bending theory is proposed that will be superposed on the previously developed
one-dimensional phenomenological peneteation model of Liss ef al. (Ins. J. Impact Engng 1, 321 -
341 (1983)). to permit a more accurate prediction of target response, This phenomenological model
is numerically analyzed and compared with the experimental findings and the two-dimensional
Lagrangiun computational codes Dyna2d and Autodyn using 4 Cray X/MP-48 and PC-AT, respee-
tively. Excellent correspondence with dati is obtained for the projectile exit velocity when a higher
mpact speed is employed. The final deformation ficld computed from the model is not limited to a
narrow zone and shows good correlation with the experimental data, especially for thinner targets,

INTRODUCTION

Plate impuct is a highly complex phenomenon which involves the effects of strain rate,
hydrodynamic, elastic, viscous and plastic witve motions, thermal strain softening (adiabatic
shear), fracture initiation and propagation, fracture surface sliding, crushing, shattering,
and even crosion and impact explosion at very high velocities (Backman and Goldsmith,
1978). No single analytical model has thus far been constructed that is capable of predicting
all features of the event and that incorporates all the mechanisms cited and perhaps others
that might be significant, for all ranges of impact velocity, types of bullet motion and angles
of incidence, and for the various materials that have been employed for both projectile and
target.

This paper is concerned with the problem of normal impact on metallic targets with a
thickness ranging from thin to intermediate relative to the diameter of a blunt-nosed
cylindrical projectile striking at a velocity in the vicinity of the ballistic limit. This region is
of special interest because, in addition to ecither perforation, embedment or ricochet of the
striker, extensive deformations of the target are observed. Several previous investigations
have proposcd a number of phenomenological models (Beynet and Plunkett, 1971 ; Landkofl
and Goldsmith, 1985; Woodward, 1987; Shadbolt er al.. 1983) for this process. Most of
these descriptions focus on plugging or shearing behavior of the target and consider only
uniaxial wave effects in the projectile (with the exception of a recent paper by Ravid and
Bodner (1983) who considered two-dimensional effects, and axisymmetric response of the
target). A recent model by Liss ef af. (1983a), concentrating on the normal impact of blunt
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cylindrical elastic/plastic projectiles on metallic plates of intermediate thickness takes into
account the lateral constraint of and simple transverse shear propagation in the target. The
phenomenon is described by a series of regions with changing mass resulting from momen-
tum transfer induced by shock waves. However, neither this nor other models accounted
for the extensive target deformation due to bending when impact occurs at speeds near the
ballistic limit.

In the present analysis, the target is divided into two regions.

(1) The primary impact zone (the area under the projectile).
(2) The secondary zone (the remainder of the target).

A dynamic plastic bending theory is proposed that will be superposed on the previously
developed one-dimensional phenomenological penetration model of Liss ez al. (1983a) to
permit a more accurate prediction of target response. The results from this model are
corroborated by computational results for the system, and checked against experimental
data resulting from tests specifically conducted to elicit the contribution of bending to
target response in the neighborhood of the ballistic limit. Excellent correspondence with
experimentally determined exit velocities of the striker was noted at higher impact speeds.
The predicted deformation zone is not limited to a narrow zone and shows good correlation
with test results, especially for the thinner targets.

EXPERIMENTAL APPARATUS

The major components of the experimental system used are similar to those employed
previously (Calder and Goldsmith, 1971 Liss and Goldsmith, 1984). A schematic of the
cxperimental sctup employed is shown in Fig. 1. A split-Hopkinson bar (Hauscr, 1966) was
also used to determine the compressive dynamic propertics of the target under impact
loading.

The facilitics employed in the experiment involve the following components.

Preumatic ballistic gun
A compressed gas gun is used to launch the projectile. The gun is equipped with a
firtng device, pressure gage, high pressure gas tank, and associated instrumentation. The
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gun has interchangeable barrels and is capable of propelling the 35.5 g, 12.7 mm diameter
cylindrical steel projectile with a length of 38.1 mm at velocitiesup to 167 ms~ .

Velocity measurement

Two Spectra-Physics (model 155) 0.5 mW helium-neon lasers are directed on parallel
paths through two barrel slots near the muzzle end with an exact lateral spacing of 152
mm, and are focused on two photodiodes powered by a d.c. supply. A Hewlett-Packard
Universal Counter Model 5325B or a Nicolet 4094 dual channel digital oscilloscope are
used to record the signal, thus permitting the determination of the velocity of the striker.
The error in this measurement is estimated to be less than 0.5% based on the rise time of
the diode counter and the projectile geometry.

Framing camera

The advantage of using a framing camera is that one can view the entire penetration
process and also be able to visualize the final motion of the plug and the projectile. In the
current work. some of the tests are photographed using a Photec 1V intermediate speed
camera (Photonic Systems. Sunnyvale, California) lit by a circular array of eight 300 W
bulbs or 2 Beckman-Whitley high speed camera. The framing rate of the Photec camera
can be varied by indexing in the range from 100 to 10,000 s~ '. The Beckman-Whitley high
speed camera uses a rotating prism and can achicve framing rates from 50.000 up to
1,000,000 s~'. A 200 W flash unit and a stroboscopic circuit with a flash duration of
approximately 1.8 ms are utilized to illuminate the whole penetration process. A capacitor
bank of 100 uF with a power supply of 3600 V provides energy for another flash unit, but
has the disadvantage of a shorter duration of the light pulse.

Target contour profilometer

This device consists of the track of a needic on the surface the contour of which is to
be measured. Changes in clevation produce the deflection of a thin cantilever beam. Two
pairs of resistanee-type strain gages are mounted on opposite sides of the beam at the sume
distance from the support. The contact pin is mounted on the free end of the beam and
adjusted so that the beam is always in a state of flexure over the eatire domain of measure-
ment. The deformed specimen is clamped on a movable table driven by a lead screw
connected to an a.c. motor, with a stroke of 101.6 mm. The strain gage output is recorded
on a Nicolet 4094 digital oscilloscope. This device is capable of meusuring the transverse
deformation of the finul target profile up to about 17.8 mm with an accuracy of 5%.

Target und projectile material

Aluminum 2024-T6 sheet metal is machined to a circular shape, with a diameter of
140 mm and left in an oven for 2 h at a temperature ranging from 775 to 825°F. The
material is then cooled in the oven at a rate of 50°F h ™! until the temperature reaches 500°F
and then left in the oven to further cool slowly to room temperature. The thickness of the
targets used are 3.18, 4.76, and 6.35 mm. The mechanical properties of the target material
are shown in Table 1. The projectiles consist of flat-ended, 12.7 mm diameter oil-hardened
drill rod with a length of 38.1 mm and a mass of 355 g, heat treated to a hardness of
60+ 2R.. In all tests, the targets were clamped in a rigid circular steel frame, as sketched in
Fig. 1. which held the specimen over its entire circumference with eight 6.35 mm diameter
bolts on the outer 12.7 mm. For some tests involving photography, a pair of steel clamps

Table 1. Mechanical propertics of the target
material (2024-0 aluminum)

Density, p 2700 kgm~*
Poisson’s ratio 0.33
Young's modulus, £ 1.0 GPa
Static yicld stress, S, 75.8 MPa
Static ultimate stress, S, 186.0 MPa

Brinel! hardness 43-56 BHN




1246 S. T. JENQ er al.

held the target at the top and bottom to provide a clearer view. In these cases. the clamping
areas consisted of 12.7 mm wide 70” arcs. and five 6.35 mm diameter bolts in each clamp
were used to hold the specimen in place.

Split-Hopkinson bar

The split-Hopkinson bar is used to investigate the dynamic properties of the 2024-0
aluminum used for the targets. The experiment is conducted by means of a striker bar, an
input bar, a transmitting bar and a throw-off bar, all composed of 6.35 mm diameter
titanium alloy Ti-6A1-4V. with a yield strength of 1.03 GPa. The input and transmitter bars
are both 558.8 mm long. Two sets of Micro-Measurement 120 Q. 3.18 mm gage length foil
resistance strain gages. type EA-13-062AP-120 with attached leads. are mounted longi-
tudinally on opposite ends of a diameter at a distance of 101.6 mm from the specimen
end of the input and transmittal bars. The output signals of the strain gages are fed into
the two active arms of a Wheatstone bridge to measure axial strains. The specimen is
sandwiched between the input and transmitter bars and the contact surfaces are machined
to be as close to plane and normal to the specimen axis as possible. Before the test, the
bridge, with two active strain gages, is balanced by using potentiometers.

PENETRATION PLUGGING MODELLING

Earlier experimental results (Liss and Goldsmith, 1984) showed that plugging always
occurs directly under the bullet when a blunt projectile strikes a metallic target of thin or
intermediate thickness at normal incidence. A scrics of tests using a split-Hopkinson bar
indicated that the 2024-0 aluminum target was relatively strain-rate insensitive over a range
of rates from about 10 to 3000 s . However, the stress levels were about twice that of their
corresponding quasistatic values, as shown in Fig. 2. The present analytical model, modifed
from Liss er al. (1983a) cncompasses a series of rigid bodics the mass and velocity of which
changes as the result of shock wave propagation.
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Fig. 3. Geometry of the projectile/plate system during the penetration process (crosion). Dotted
lines represent the initial configuration.

In the current investigation, the projectile is made of hard steel and no permanent
deformation was found after the tests. Therefore, the projectile is assumed to behave as a
rigid body. The target shown schematically in Fig. 3 is at rest before the penetration process
is initiated. It is divided into two regions.

(1) A primary impact zonce (the arca under the projectile, i.e. r < «).
(2) An exterior zone comprising the remainder of the target (i.c. r > «).

A deformable cylinder located in the primary impict zone will then be subjected to a thrust
resulting from the propagation of one-dimensional uniform plane waves, generating coaxial
shear at the periphery, and will also be constrained in any lateral flow by the surrounding
material. The behavior of this local plugging phenomenon is characterized neither by a
uniaxial stress wave motion nor by uniaxial strain wave motion, but rather by an inter-
mediate cffect, as described in Liss er af. (1983a). A bricf summary of the events and the
relevant equations developed there required for the present analysis are presented below.

Erosion

If the relative velocity of the projectile and the adjacent target material exceeds the
plastic wave velocity of cither the target or projectile, shock waves are emitted and propagated
with this relative speed into the target or projectile, depending on the dynamic mechanical
characteristics of the materials, and a shock wave front stands ahead of the interface.
Material passing through the shock wave front melts and flashes, and cratering of the
projectile or target material occurs. The system exhibits two rigid-body motions, composed
of the projectile and target material ahead of the projectile (clements {1} and {4} as shown
in Fig. 3). The results obtained by Liss er al. (1983a) determine the force applied to the
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projectile, which is the thrust of the shock layer opposing the projectile motion
dr, ,
F<f>=M1-d—[—= —AlY. 4+ pr(vy—13)7] )

where M, and V', = (dx,/dr) are the mass and velocity of the projectile, i.c. element 1,
respectively. Since the material in elements 3 and 4 is not exposed to the shock, ¢; = ¢, in
this stage. The total force applied to the target during the first state is

F() =04 =[pr(v,—ty) + V)4 (2

where p, is the density of the target and A4 the projectile cross-sectional area. Y, is the
dynamic target yield stress subject to a constraint resulting from the target material sur-
rounding the region r = a. Further ¢,{¢)> is the target particle velocity corresponding to
element /.

Plastic wave propagation

Plastic wave propagation starts when the relative velocity between the projectile and
the target material ahead of it is less than the plastic wave propagation speed. The total
force exerted on target elements 3 and 4 during this stage is given by

FOD = [(vy—v4) pr+ Y ]JA+2rat (v —x)) (3)

where 1, is the dynamic shear stress at the periphery of element 2 ; during this stage, vy = oy
and « is the radius of the projectile.

Pluy separation
This begins when the plug is about Lo separate from the rear surface of the target. The
total foree applied to the target during the third stage is given as

Fy =[(0y—o ) e, —e)lApe + 2rar (H+ x5y —x,) (4)
where H is the thickness of the target.

Pluy slippiny

This stage starts when the whole plug (elements 2 and 4) attains its final thickness and
slips with uniform velocity equal to the projectile velocity. The stage is terminated when
the projectile is not in contact with the target, that is, either perforation is completed or the
projectile starts to rebound. The target material is assumed to be ductile enough so that the
plug is nearly sheared out before final cracking has occurred. The force applied to the target
during slipping is cqual and opposite to the shear force exerted on the entire plug

FOy = 2nar [JH+xy—x|]. (5

Post-perforation deformation

Plug deformation after complete penctration is assumed to occur when the plug has
been completely sheared out from the target, but before it acquires the projectile velocity.
Erosion and shock wave propagation may occur successively. During this stage, there are
no constraint effects to side flow or shear at the plug periphery and, therefore, the projectile
does not exert any force on the target.

PLATE BENDING MODEL

The mechanism of the global target deformation due to impulsive loading treated here
is bending, while membrane and transverse shear effects are not considered in this analysis.
The fact that bending has a significant effect relative to shear in this velocity range is verified
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from experimental results for target plates pre-drilled with small holes and penetrated by
projectiles, as is shown in the next section. In this analysis, the target is subjected to
impulsive loading involving momentum transfer and dynamic shear forces occurring during
the local plugging processes. The loading exerted on the target is determined from the
penetration model described previously which results in a portion of the target deformation.
The plate is modelled as infinite in its lateral extent and changes in target material properties.
thermal and strain-rate effects (Valathur and Baker, 1971) associated with the deformation
and fracture processes are not taken into account.

Elastic strains are considered to be small and are neglected compared to the plastic
strains, so that the material behaves as a rigid body in the regions where no plastic
deformation is produced. Since it is reasonable to represent the stress-strain relation for
2024-0 aluminum by a rigid/perfectly plastic model. the classical plate bending theory in
conjunction with the rigid/perfectly plastic constitutive relation is adopted here to take into
account the global target response when subjected to normal impact loading.

The perfectly plastic material considered here is assumed to obey the Tresca yield
condition and its associated flow rules. For the case of plane stress, the yield condition is
shown in Fig. 4. The hexagonal shape (ABCDEF) of this yield condition represents the
loci of the pairs of principal values in terms of stresses ¢, and ¢, or moments M, and M,
that cause plastic flow. All such points represent states of stress for which the maximum
shearing stress is always 6/2, where g, is the material dynamic yield stress. For the hexagon
(ABCDEF) only the regimes ABC need to be investigated in the plastic analysis of this
plate problem. As a continuation of the work of Shawa (1978). we divide the target into
four regions by three concentric circles with the center at r = 0, associated with the regimes
ABC of the Tresca yiclding condition. One plastic hinge circle is always located at the edge
of the impacting projectile, while a scecond circle is located where the normal shear force
resultant is zero. There is a third circle, which is not a plastic hinge circle dictated by the
Tresea yicld condition, that is positioned between the two plastic hinge circles. The hinge
circles associated with the kinematically admissible velocity ficlds then constitute the defor-
mation pattern for the target. The detailed formulation is shown in the following paragraphs,

Consider the plastic bending of an initially stress-free circular plate under axisymmetric
loading ; the thickness # of the plate is constant and the plate has a mass g per unit arca.
The z-axis of a cylindrical coordinate system (r, 0, 2) is directed downwards. The target
material is undeformed until the impact occurs, and the loading resulting from the process
of contact is determined by the plugging model mentioned above. The kinematic for-
mulation of the plate uses Kirchhoft's assumption. Therefore, the kinematic relations

Mg
s !
C F M,
-Mo M,
o} E

Fig. 4. Graphical representation of the Tresca yield condition.
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between transverse displacement and the curvatures of the plate can be written as

K, = —-”'.rr and Kg = - TJ (6)

where K, and K, are the curvatures with respect to the r- and f-directions, and w refers to
the transverse displacement of the plate. Note that (-), represents the derivative of variable
() with respect to variable r. The strains are determined by the relations

e, =:K and ¢ =:zK,. M

Since the plate considered is of constant thickness. the plastic moments per unit cir-
cumferential length take the form

M, =0,[H2) and M, =0,[H/2)} ®

in the radial and circumferential directions, respectively. The dynamic equations result from
the equilibrium relation or the minimum potential energy principle and, with g as the mass
per unit area, can be written as

(r@), +rlp—pw, {r.)] =0 9)
and

(rM,), =M, —(rQ,) =0 (10)

where p{t) = [F(t)/(ra*)] and F() and @, are the corresponding load and vertical shear
force per unit fength, respectively. The pressure p considered here is of such high intensity
that the plate begins to yield instantancously on impact.

As shown in Fig. 3, a hinge circle of radius « forms at the edge of the impact region.
The region deformed by bending of the plates is conlined within a hinge circle of radius R.
In the following, we define the plate to be composed of four regions: region (1), r € a;
region (I1), a < r < ry: region (1), ry < r < R; and region (1V), r > R. Regions (IT) and
(111) are designated to correspond to regimes AB and BC on the yield loci, based on the
deformed pattern of the target observed from the experiments. An intermediate circle of
radius r, such that « < r, < R also forms, associated with point B of the Tresca yield
hexagon.,

Based on the flow rules associated with the yicld conditions for the regions defined and
the assumption of incompressibility, the admissible velocity ficlds of the target in terms of
w and radial displacement u are as follows.

In region (1)
wlr, ) =ult): w,lr,td =u,ty; w,lr, 1) =u,{). (1)

In region (1)
K = —w, {r.t>=0. (12)

The velocity ficld in region (1) can be obtained after integrating eqn (12) twice with respect
to the spatial variable r and the result is

w, {r oty = A + B{Dr (13)
where functions A<t) and B{r) arc integration constants.
In region (I11)
3 . 1
Ko+ K, = — ;[rw,,,(r. )], =0. (14
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Here, the variable r is not equal to zero in the region considered. After integrating eqn (14)
twice with respect to r and introducing the integration functions C{¢)> and D{t), we may
obtain the corresponding velocity field as

w,r, 1) =C{)In{ry+ Do), (15)

The integration functions will be determined from the appropriate boundary conditions
and the continuity relations.

In region (IV)
w{r, ) = w(r.t) = w,(r.t> =0 (16)

In this region, the material behaves as a rigid body. It should be recalled that, at the outer
hinge circle, i.e. r = R{¢), no deformation occurs and the material remains stationary.
Application of the continuity condition to the location of the intermediate circle at r = ro{t)
results in the relations wlrg.t) = w{rg . 1), and the corresponding slope at r = ry of the
plate is also continuous. Moreover, at the interface of regions (I) and (ID), i.e. r = a, the
velocity field is continuous and is equal to «,{¢>. Based on these conditions, all the par-
ameters described in the velocity field have been determined as functions of time as well as
the locations of the hinge circles and the intermediate circle. For convenience, the following
non-dimensional variables are introduced :

_{cgi

X, = ﬁf‘,u’“ ) (n
4]

X, = (18)
a

X,= RS ("

w=m%§%+xz-t. (20)

Hence, the velocity ficld obtained above can be rewritten in the non-dimensional form,

In region (1)
2

. 7]
X = %l-;w,,,o. 0. @
In region (1)
#az _ X'| X; :
A wy ) = " [ln X, H-a/\’z} 22)
In region (11D
;mz , X{ i
E“n(’\ ) v (i“ a) Xs. (23)

Here wy, wy and wy represent the transverse displacement corresponding to regions (1), (IT),
and (I1D), respectively. The acceleration field for the moving hinge solution can be obtained
after taking the time derivative of the velocity components.
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In region (D)

-

EWWO’ =X, (24

In region (II)

pa® X[, x [r. X X
=Wy ) = v [h‘l I+ - Xz] [: Xr}-X;-.Xz}

X,
M, v
XI r X . X; Xz
e @l -2) e
In region (II)

,U(l i’| X| X3 . 4‘-,3 /Y’: X-F| X’)
e A L] | s A A

Hinges will propagate during the penetration process to dissipate the kinetic energy of the
projectile.

The dynamic equations, eqns (9) and (10), are now applied to regions (I) and (1),
Integrating this result with respect to r and kecping in mind that M, = M|, over this range,
that M, =0 atr = roand M, = M, at the edge of the projectile r = a, there results

t:’;fi‘ {:f""?'{(’[;:_t]+r;3[_ -‘v-§+3X1 —8+ ;%H uf (;2 %M)]}
. ); ¥ {.’:@[‘ gy FTE :f']* " {(,5;“)[‘ i
e o (3-8
) s a8 (2 8]

! ~6F{t)
()l ";r] @

where F(r) is the loading function and is computed from the phenomenological plugging
model. Again, eqns (9) and (10) are applied to region (III), where M, — M, = —M,. After
integrating this result from r = ryto Rand recalling that M, = Myatr=rjand M, = — M,
at r = R, we obtain the second key moment equation

leo[z-m f;j:M‘,fg{ mii‘\;:{e-r;[ ;;+6 4x,

(FRICH) S et
S il bt R R 6o B
IR ERI) NI 2
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Now consider the requirement that the shear be continuous and, therefore, that the
shear force should vanish at the outer hinge position. i.e. Q, = 0, at R{t). This requirement
may be written as

s I
{rﬁ/[r}.r—Mu =0 = Mo.Y| {64— E [(— =3 +6—.4X,)

~

I 2 6 X, 3 3 6 X,
*y (Xi B ') [_ X3 +6“4‘“+(X§ ”6) ('" X:)" ntr " X:]}

X, XaM, ( 6 ) 1 l: 2 ( 6 )( .1(3)
[ S. —— — - — -4, ey — —
+ v, { X 6 v i +6 X+ ¥ 6jlin X,

. + 3_6 In "‘]}_ l2l‘(t) (29)

Equations (27) -(29) are three simultancous relations the solution of which gives the global
target response under this impact loading. These equations may be rewritten in matrix form
as

(4] [X] = [B] (30

where [X]" = [¥|, X4, X;] and the components of matrices [4] and [B] can be obtained
from eqns (27)-(29). With the given initial conditions of the matrix and the loading
conditions, the problem may be successively solved in time. The stationary hinge solution
is applied to locate the initial hinges, i.e. r, and R at ¢ = 0. This solution assumes that, at
the instant of impact, the force exerted on the plate is constant. This initial hinge position
can be obtained from the formulation described above with the assumption that, at this
instant, the hinges are stationary. The plugging model of Liss e a/. (1983a) is used to
compute the corresponding penctration force, F{r), and the motion of the projectile and
the plugging material at every time step. This interaction force is then used to compute the
global target deformation described in this section based on the plate bending formulation,
A computer program has been written to evaluate this penctration process by iteration,

RESULTS AND DISCUSSION

Bending and shearing angle measurement

In order to analyze the motion of the target subject to impact loading by a projectile,
it is helpful to determine the major mechanism of the problem from a series of experiments.
For a plate, the mechanisms for the global target responsc are usually dominated by a
combination of membrane, bending. and shearing deformations in addition to plugging
and/or petalling when penetration occurs. In the current investigations, the target thickness
varies from 3.18 to 6.35 mm. Table 2 summarizes the initial conditions and the final
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Table 2. Summary of impact tests

Projectile Target
Impact Impact Final Maximum
momentum velocity velocity Thickness deflection
Run (kgms™?) (ms™") (ms~") {mm) (mm)*t

1 2.74 77 0 3.2 13.2
2 3.053 86 0 32 18.2
3 3.30 93 0 32 20.2
4 38 107 0 32 15.2
5 532§ 150 127 32 14.9
6 6.8 172 157 3.2 9.3
7 4.108 104 0 6.4 12.6
8 4.86 123 0 6.4 14.4
9 4.98 126 — 64 134
10 6.926 150 1o 6.4 139
It 13.66 343 300 6.4 8.0
12 16.43 416 382 6.4 7.6

t The maximum deflection used here is related to the value of x. or x;+ H for non-perforated or
perforated tests, respectively.

deformations for the tests. A series of tests was conducted to examine the effects of bend-
ing and shearing on the target. Some targets were pre-drilled with a total of 20 holes
(0.8 mm diameter) located along a radial line. Six tests were conducted with the impact
velocity near the corresponding ballistic limit. A 0.8 mm diameter pin was inserted into
these pre-drilled holes after the plates had been struck to measure the bending angles relative
to the initial orientations with the aid of a comparator. The slopes of the corresponding
deformed plate profiles were also derived from the measurement of the plate profile. The
totul slope is the sum of the shear deformation and bending deformation as in the analysis
of a Timoshenko beam. Figure 5 shows that for thin plates (i.c. 3.18 mm thick), the effect
of bending is dominant. The ratio of the shearing angle to the bending angle is approximately
30%. However, the shear effect is still important for the region next to the edge of the
projectile. Figure 6 shows that the bending and the shearing effects are of equal importance
for the 6.35 mm thick plates, since trunsverse shear becomes more significant as the thickness
of the plate is increased.

Experimental results (Liss and Goldsmith, 1984) support the computed predictions that
the extent of the zone of deformation beyond the contact region is limited to approximately a
radius equal to that of the projectile for the thicker plates impacted at higher velocitics.
However, the comparison shows that the simple transverse shear mechanism does not
account for the total target deflection when thin plates or those of intermediate thickness
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Fig. 5. Bending angle measurement. Target thickness, 3.18 mm,
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are used. Moreover, the retention of a circular-shape of the pre-drilled holes beyond a
distance more than two projectile radii from the center indicates the absence of significant
membrane effects in this region, although they are surely present in the region around the

contact area.

Dynamic split-Hopkinson bar test

Three specimens made of a 2040-0 aluminum rod were examined dynamically. The
output signals of two pairs of dual strain gages, located on the input and transmitter bars,
respectively, are recorded. Curves a, b, and ¢, shown in Fig. 7, arc plotted for striins of 1,

1,000
£
100 |-
n
u 10 b=
Curve
)
r a 1% strain
: L o b 2% strain
s c 3% strain
e 0.1 d Run H1 @
o Sk 0.33 MPa
e Run H2 @
0.01} 0.41 MPa
£ Run H3 @
L 0.70 MPa
0.001
<4
i | [ | 1
0 10 20 30 40 50 60
Stress (kpsi)
i n A 1
0.0 0.1 0.2 0.3 0.4

Stress (GPa)

Fig. 7. Split-Hopkinson bar test for a 2024-0 aluminum rod.



1256 S. T. Jenq et al.

Table 3. Summary of the maximum plate deflection and the projectile exit velocity from the

bending and shear models
Projectile Target
Final velocity Maximum deformation
Initial {ms™ ") {(x;+H)yatr = g {cm)
velocity Bending Shear Thickness Bending Shear
Run (ms™") model model (mm) model {(mm) model (mm)
RI 77 0 36.6 32 1.5 4.96
(7.8t
R2 107 0 797 32 127 4.94
(13.2)
R3 160 121.6 108 32 14.0 3.67
R4 i04 [t} 0 6.4 9.5 7.63
(11.5)t (13.2)t
RS 150 107.5 106.5 6.4 1.7 7.3
R6 416 3849 3849 6.4 7.53 7.52

t The quantity in parentheses represents the maximum deformation at the center of the target.
r=0

2, and 3%, respectively. The strain-rate effect of the 2024-0 aluminum material is not
significant in comparison to materials such as mild steel, which was shown to be highly
strain-rate dependent by Hauser (1966). The static and dynamic yield stresses, determined
from an Instron machine and from a split-Hopkinson bar are 76 and 199 MPa, respectively.
Since the effect of plug constraint on the dynamic yield stress in a plate differs from the
unconstrained rod by a factor of nearly two as reported by Liss ¢t al. (1983b) such a
correction factor was applied to the uniaxial dynumic yicld stress in the present analytical
model.

Analytical model

The maximum plate deflections, x4+ /1 as shown in Fig. 8, at a distance equal to the
projectile radius from the center of the target are obtained from the bending mode! and the
previous shear model for various impact velocities near the ballistic limit. A summary of
the computed results is shown in Tuble 3 for these two models. A set of experiments was
also conducted to obtain the final target deformation contour by means of a profilometer.
The test results were recorded using a Nicolet oscilloscope and its associated disk drive.
Table 4 summarizes the experimental maximum deformations x;+ /H of the target and the
final projectile velocities of the rigid projectile for the present impact tests. The bending
model predicts maximum target deformations that follow the same trend found in the
experimental results. Figures 8(a)-(e) show the computed and measured target profiles after
impact. The computed maximum plate deformation based on the bending model is closer
to the test results than that based on Liss e7 al.'s shear model. For example, the maximum

=z 5

~ target thickress 6.35 mm
bt vV, = 104dms”

c 4 i

]
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(a)
Fig. 8. Comparison of analytical and test results for the final target deformation of the bend-

ing model. Dotted and solid lines represent the computed and test results, respectively: (a) ¢, =
dms (b, =10ms (e, =TTms (e, =107Tms ' (e)y, = 150ms™",



Effect of target bending in normal impact of a flat-ended cylindrical projectile

5
<

target thickness 6.35 mm
Vi =150 ms”

target deformation{x/H)

[
w
(=]

-40 -30 -20 -10 O 10 20 30 40 50
radial position (mm)
{b)

target thic"kness 3.18 mm

vi.ﬁms

target deformation(x/H}

-50 -40 30 =20 -10 0 10 20 3o 40 50
radial position {(mm)
(c}

target thickness 3.18 mm
= 107 ms™

>~
-
e

target deformation{x/H)

-30 =40 -30 =20 -10 O 18 20 30 40 50
radial position {mm}

{d)
= 5
vy target thickness 3.18 mm
— -t
-t - = 150ms
°
e
F*]
g 3
i
S
: *
°
o -
i
3 ] 1 1 1]

-50 -40 30 -20 -10 O 10 20 30 40 50
radial position {mm)
{e)

Fig. 8. (Continued.}

257



1258 S. T. JenqQ et al.

Table 4. Summary of the maximum plate deflection and the projectile exit velocity from

Dynald and Autodyn codes
Projectile Target
Initial Final Maximum deformation
velocity velocity Thickness (e;+H)atr=a
Run (ms™Y (ms™') (mm) (mm)
D1 104 0 6.4 15.0%
D2 104 0 6.4 11.4%
Al 77 0 32 17.3¢
Al 150 124 3.2 149
Ad 104 0 6.4 17.2¢
AS 150 120 6.4 12.0

t The quantity represents the maximum deformation at the center of the target. i.c.
r=20.

deformations obtained from the bending and this shearing model for a target 3.18 mm thick
struck by a projectile with an initial velocity of 107 m s~' were 12.7 and 4.94 mm,
respectively. These two predicted values differ from the experimental results by 18 and 67%.
This shows that the dominant mechanism of thin target deformation subjected to impact
loading is bending in comparison to shearing.

However, the transverse shear mechanism became important when the target thickness
was increased. For example, the maximum deformation of a target 6.35 mm thick struck
by a projectile travelling with an initial velocity of 150 m s~ is computed to be 7.7 and 7.3
mm for the bending model and the shear model, respectively. The corresponding differences
between the predictions of these two models and test data are 45 and 48%. Results computed
from the phenomenological model shown in Table 3 agree with the experimental findings.

(1) The maximum plate deflection for a specific target thickness increases as the
projectile impact velocity is increased up to the ballistic limit.

(2) Beyond the ballistic limit, the gross plate deformation diminishes with increasing
impact momentum.

(3) Transverse shear deformation is observed to be more affected near the zone r < 3a,
where a is the projectile radius, especially for those cases where the plate is perforated.

The calculated target deformations obtained from the bending model and test results
are shown in Figs 8(a) and (b) for a target thickness of 6.35 mm struck by the projectile at
velocities of 104 and 150 m s, respectively. Figures 8(c)-(e) present the experimental and
computed results for the 3.18 mm thick target struck by a projectile at velocities of 77, 107
and 150 m s~ ', respectively. These diagrams show that the predicted target deformation is
not restricted to the zone close to the projectile radius as indicated by the shear model, and
the caleulated final plate deformations resemble more closely the experimental findings.
Nevertheless, the solutions still underestimate the target response compared to the tests.
This may be due to the following reasons.

(1) The geometry of the plate is assumed to be infinite in the radial direction. As the
plastic hinges propugate further away, more energy is required to accelerate the plate.

(2) In the simulation, we assume that the plate yicld stress takes on the dynamic yield
stress value. This may make the plate too stiff so that it differs from the actual material
behavior during penctration.

(3) The phenomenological model assumes that the material properties do not vary
during the penetration processes; however, the effect of plate softening and fracture
phenomena may be significant.

Figure 9 shows the transverse deflection as a function of the radial position of a plate
at various instants when struck at an initial velocity of 73 m s~' by a rigid blunt cylinder
with a mass of 47 g and a diameter of 12.3 mm. The experimental findings of the plate
deflection and the membrane solutions by Beynet and Plunkett (1971) and the solutions
without inclusion of plugging are shown as the dashed line in the same plots at various
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Fig. 9. Target plate response using the bending model without employing the plugging model.
plotted at various times throughout the penetration process. The experimental data and the Beynet
membrane solution are also shown.

instaats. The results indicate that the bending solutions accurately predict the experimental
findings. For this run, a static yicld stress of the 2024-T3 aluminum plate was chosen as
0.345 GPua s0 as to correspond to the values used by Beynet and Plunkett (1971), while the
dynamic yield stress was used for the present plate model. The plugging model is not
incorporated here ; the projectile is assumed to decelerate after impact and to move together
with the target, and the target is assumed to be intact at all times.,

The terminal projectile momentum is a uscful and relatively casily measured variable,
it can be employed to compare the predictions of the analytical model and the results of
the tests, Figures 10(a) and (b) show the final projectile momentum as a function of the
initial momentum for two different 2024-0 aluminum plate thicknesses, 3.18 and 6.35 mm,
Predictions of the bending model and shear model are presented along with the experimental
results. The computed final velocity for both models is shown in Table 3. The corresponding
experimental data are presented in Table 2. Figure 10 shows that the theoretical curves
generally follow the data quite well. Better agreement is obtained for the higher impact
velocities ; however, for impuact velocities near the ballistic limit, the current model scems
to predict a higher ballistic limit than the shear model. The flexural resistance of the plate
is thus greater than that of shear for the present impact parameters.
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The strong transverse shear interaction in the plate bending problem can be treated by
utilizing the Mindlin—-Uflyand approach (Mindlin. 1951 ; Uflyand. 1948). The value of the
shear correction factor depends on the assumptions employed and, in any event, is difficult
to obtain numerically by a plate formulation. In order to investigate the effect of transverse
shear, available codes such as Dyna2d and Autodyn are utilized here. The formulation of
the code is based on continuum mechanics in conjunction with finite element or finite
difference techniques to obtain an exact solution within the limits of truncation and round-
off error. The effect of transverse shear is incorporated in these codes.

Lagrangian finite element code: Dynald

A Lagrangian finite element code, Dyna2d (Hallquist, 1978), is used to simulate the
penetration process for a 2024-0 aluminum target of 6.35 mm thickness struck by a blunt
rigid cylindrical projectile with an initial velocity of 104 m s ~'. These computations, which
are based on a continuum mechanics formulation, incorporate all relevant plate deformation
mechanisms and thus provide a measure of the effectiveness of the present plate mode which
incorporates only a limited number of these behavior patterns. The simulations were
performed on a Cray computer, The constitutive assumption used for the target is an
isotropic linear work-hardening model. The projectile is assumed to be rigid with no
permanent deformation allowed. Two cases involving this phenomenon, labelled D1 and
D2 were computed. The difference between them is that Run D1 uses the static stress—
strain data shown in Table 1. while Run D2 utilizes the dynamic stress-strain relation based
on the following information proposed by Recht and Ipson (1963): yicld stress o, (in
MPa) = 3.92 BHN, and btan = 4.55 BHN, where BHN and btan represent the Brinell
hardness number and the hardening parameter, respectively. The yield strengths for Runs
D1 and D2 arc 76 and 199 MPa, respectively. Plots of the simulations are shown in Figs
1H(a) and (b) where the projectile has rebounded in the second diagram. Corresponding
effective plastic strain contours were also obtained but are not shown here. The results
indicate that the maximum deformation occurs at the center of the target with values of 15
and 11.4 mm for Runs DI and D2, respectively, The maximum deformation for Run DI
is 19% larger than the experimental data duce to the use of a static stress-strain data in this
computation. Run D2 was corrected by using the dynamic stress-strain relationship and
the results showed that the maximum deflection at the plate center underestimated the
experimental results by 10%.

Lagrangian finite difference code : Autodyn

Two penctration problems were examined in the previous section using the program
Dyna2d. However, the current version of Dyna2d does not have the capability to introduce
new slide lines during computations. This is the key to properly solving the perforation
problem using currently available codes. Therefore, Autodyn is employed to solve the case
of 6.35 and 3.18 mm 2024-0 aluminum targets struck by a 35.5 g cylindrical. blunt steel
projectile of 12.7 mm diameter. Several runs indicated by the letter A were performed ; the
material propertics used are shown in Table 1. A summary of results is presented in Table
4. The important features of this code are given below.

(1) Interactive rezoning, which eliminates severe mesh distortions that occur when the
target is subjected to high loading rates, such as occur in an impact.

(2) Editing impact/slide interfaces, which allows adding or deleting sliding lines during
computation in order to simulate the fragmentation or fracture phenomenon occurring in
the problem.

Figures 12(a) and (b) show the deformation field of a 6.35 mm target at a time 59 and 84
us after impact is initiated, A slide line is generated that is located at the edge of the plug
in the target and the projectile starts to push it out of the target, eventually resulting in
perforation. The computed maximum deformation of the target after perforation was 12
mm, while the maximum deformation obtained from the test was 13.9 mm. These valucs
differ by less than 14%. Figure 13 shows the evolution of the particle velocity of the
projectile. The projectile exit velocity is computed to be around 120 m s~ ', while the exit
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Fig. 12. Simulation of a 6.35 mm soft aluminum target struck by a 12.7 mm diameter hard-steel
projectile with ¢, = 150 m s~ ': (1) at 59 us and (b) at 84 us after impact (Run AS).

velocity obtained from the test is 110 m s~'. The difference is less than 10%. Run AS
involves the non-perforated case, and the corresponding deformation profiles are plotted
in Figs 14(a) and (b) at 200 and 352 us, respectively. Figure 15 reveals that the target is
stopped and rebounds.

Two similar runs, Runs Al and A3, were also performed for a 3.18 mm thick target
struck at velocities of 77 and 150 m s !, respectively. Run A3 results in target perforation
whercas Run Al does not. Figures 16 and 17 show the deformed profile for Runs A3 and
Al, respectively. The maximum target deflections obtained are 14.9 and 17.3 mm for these
two runs. The exit velocity for Run A3 is within 3% of the experimental data. The
results obtained from the code overestimate the target deformation, especially for the non-
perforated cases because the static material strength was used. The fracture processes
and the material propertics after damage are not precisely known for the penctration
phenomenon. The artificial slide line introduced for perforated cases is bused on test
information. The results are satisfactory for the current runs. The codes are based on a
continuum mechanics formulation ; therefore, higher order effects such as the transverse
shear correction are considered. The availuble phenomenological plugging models, such as
the five-stage model of Liss ¢f of. (1983a) assume that the material properties are invariant

Run A4 §.35 Run A4 £.35
8 200 us mm @ 352 us mm
6.35 mm 6.35 mn
: C )
[ \ ,
{a) (b}

Fig. 4. Simulation of 6.35 mm target struck by a projectile with v, = 104 m s~ ': (a) at 200 us and
(b) at 352 us alter impact (Run Ad).
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Fig. 16. Simulation of 3.18 mm aluminum target struck by a 12.7 mm diameter steel projectile with
an initial velocity of 150 ms~'; (a) at 10 s and (b) at 134 gs after impact (Run AJ3).

during the penetration process and the perforation criterion is based on simple geometrical
relations. These assumptions need to be justified. Itis suggested that the material constitutive
modelling and the failure criterion for the penetration should be investigated more inten-
sively in future rescarch.

CONCLUSIONS

The present work involved a combined phenomenological, numerical and experimental
investigation designed to determine the effects of bending on the response of thin metallic
targets by normal impact of rigid, blunt projectiles at velocities in the vicinity of the ballistic
limit. The physical model consisted of a combination of a dynamic representation of the
bending of a rigid/perfectly plastic plate with a previously developed five-stage plugging
analysis. Two numerical programs, Dyna2d exccuted on a Cray computer, and Autodyn
used on a PC, which allows generation of slide zones during the perforation process
were utilized. Experimental results were obtained from normal impacts of 34 g hard-steel
projectiles against soft aluminum targets with thicknesses ranging from 3.18 to 6.35 mm at

Run A1l Run A1l
@ 300 us 3.18 @ 450 us 3.18
mm mm
6.35 mm 6.35 mm
ﬁ C 1
{ {

(a)

{(b)

Fig. 17. Simulation of 318 mm thick soft aluminum turget struck by a 12.7 mm diamecter steel
projectile with an initial velocity of 77 m s~ ': (a) at 300 us and (b) at 450 gs after impact (Run
Al
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velocities up to 183 m s~ '. Bending and shearing contributions were derived from the total
slope of the plate and measurements of the angle of a pin extending from small pre-drilied
holes in the samples.

It is concluded that a theory featuring bending in conjunction with a plugging model
provides more accurate results than an analysis based on plate shear in the vicinity of the
ballistic limit when the plates are thin compared to the projectile radius. For thicker plates,
the bending and shear contributions to the central deformation are about equal. The
Lagrangian finite element code Dyna2d exhibits closer correlation with experimental results
when dynamic material properties are employed. The Lagrangian finite difference program
Autodyn overestimate the target deflection, particularly in the absence of perforation, since
static values of the material strength were employed.

Acknowledgement—This paper is based upon a dissertation submitted in partia! fulfillment of the requirements of
the Ph.D. degree at the University of California, Berkeley. The work was sponsored by the Army Research Office
under Contract No. DAA 29-84-0021 and in part by a gift from FMC Corporation.

REFERENCES

Backman, M. and Goldsmith, W. (1978). The mechanics of penetration of projectiles into targets. Int. J. Engng
Sci. 16, 1-99.

Beynet, P.and Plunkett, R. (1971). Plate impact and plastic deformation by projectiles. Expl Mech. U, 64-70.

Calder, C. A. and Goldsmith, W. (1971). Plastic deformation and perforation of thin plates resulting from
projectile impact. Int. J. Solids Structures 7, 863881,

Hallquist, J. O. (1978). Dyna 2D —an explicit finite element and fimite difference code for axisymmetric and plane
strain calculations, User's Guide, University of California, Lawrence Livermore National Laboratory, Rept,
UCRL-52429,

Hauser, F. E. (1966). Techniques for measuring stress strain relations at high strain rates. Expl Mech. 6, 395 -
402.

Landkof, B. and Goldsmith, W. (1985). Petalting of thin metallic plates during penetration by cylindro-conical
projectiles. dnt. S, Solids Structures 24, 245 266,

Liss, J. and Goldsmith, W, (1984). Plate perforition phenomeni due to normal impact by blunt cylinders. . [
Impact Engng 2, 37 64,

Liss, J., Goldsmith, W. and Kelly, 1. M. (1983a). A phenomenological penctration model of plates. Inr. J. Imipact
Engng 1, 321 341

Liss, 1., Goldsmith, W, and Thauser, F. E. {1983b), Consteaint to side How in plutes. /. Appl. Mech. 59, 694 698,

Mindlin, R. D, (1951). Influcnce of rotatory inertia and shear on flexural motions of isotropic chustic plates. J.
Appl. Mech. 18, 31-38.

Ravid, M. and Bodner, 8. R. (1983). Dynamic perforation of viscoplastic plates by rigid projectiles. Int, J. Engny
Sei. 21, 577 591

Recht, R, F, and Ipson, T. W, (1963). Ballistic perforation dynamics. J. Appl. Mech, E 30, 384 -390,

Shadbolt, P. §., Corran, R. 8. and Ruiz, C. (1983). A comparison of plate perforation models in the sub-ordnance
impact velocity range. Ing. J. Impact Engng 1, 2349,

Shawit, O. M. (1978). The application of dynamic plastic analysis to problems of structural impact. Ph.D.
Dissertation, University of Calitornia, Berkeley.

Uflyand, Y. 8. (1948). The propagation of waves in the transverse vibrations of bars and plates (in Russian).
Prikl. Mar. Mekh. 12, 287.

Valuthur, M. and Baker, W. E. (1971). Wave propugation resulting from very high impact velocity. J. Appl.
Moech. 39, 555-557.

Woodward, R. L. (1987). A structural model for thin plate perforation by normal impact of blunt projectites. fne,
g Impuct Engng 5,129 140,



